番号鸽

当前位置: 番号鸽 > 学术报告
几何与代数基础科学研究中心
Braided symmetric algebras and a first fundamental theorem of invariant theory for ${\rm U}_q(G_2)$
胡红梅 副教授(上海海事大学)
2026年1月9日周五 13:30 -–15:00   闵行校区数学楼401

主持人:胡乃红

报告人简介:
胡红梅,上海海事大学理学院副教授。主要从事量子群的结构(解决了1995年关于量子群结构的Majid猜想),近年来从事量子群不变量理论以及素特征域上(super)Yangians结构等研究工作,相关代表性成果发表在J. Lond. Math. Soc., Lett. Math. Phys., Isarel J. Math., Sci. Math. China, J. Algebra, Math. Research Lett., J. Math. Phys.等杂志上.

报告摘要:
The quantum symmetric algebra S_q(V) of the 7-dimensional simple U_q(G_2)-module V is not a flat deformation of the symmetric algebra of V. We decompose S_q(V) at generic q into a direct sum of simple U_q(G_2)-submodules, and determine their multiplicities. We construct a finite set of explicit generators for the subalgebra consisting of U_q(G_2)-invariants of the tensor product algebra S_q(V)}^{\otimes m} endowed with a braided multiplication defined by using the universal R-matrix.This result in particular enables one to describe the subspace of invariants of any tensor power of V, thus may be regarded as a noncommutative analogue of the first fundamental theorem of invariant theory forU_q(G_2).This is a joint work with Prof. Zhang Ruibin.